Bayesian Model Averaging for Linear Regression Models

نویسندگان

  • Adrian E. Raftery
  • David Madigan
  • Jennifer A. Hoeting
چکیده

We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of Adrian E. Raftery is Professor of Statistics and Sociology, David Madigan is Assistant Professor of Statistics, both at the Department of Statistics,University of Washington, Box 354322, Seattle, WA 98195-4322. Jennifer Hoeting is Assistant Professor of Statistics at the Department of Statistics, Colorado State University, Fort Collins, CO 80523. The research of Raftery and Hoeting was partially supported by ONR Contract N-00014-91-J-1074. Madigan's research was partially supported by NSF grant no. DMS 92111627. The authors are grateful to Danika Lew for research assistance and the Editor, the Associate Editor, two anonymous referees and David Draper for very helpful comments that greatly improved the article.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Modeling Factors Affecting Tax Evasion in Iran's Economy Based on the Bayesian averaging approach

This study seeks to model tax evasion and identify how effective factors affect tax evasion in the Iranian economy. Recent models show the failure of traditional models; Models do not have enough ability to model hidden variables such as tax evasion. The present study considers this failure in identifying explanatory variables and experimental model design. To achieve this, the Bayesian averagi...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Model selection in Medical Research: A simulation study comparing Bayesian Model Averaging and Stepwise Regression

BACKGROUND Automatic variable selection methods are usually discouraged in medical research although we believe they might be valuable for studies where subject matter knowledge is limited. Bayesian model averaging may be useful for model selection but only limited attempts to compare it to stepwise regression have been published. We therefore performed a simulation study to compare stepwise re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997